Environomic optimal design of power plants with CO2 capture

نویسندگان

  • Laurence Tock
  • François Maréchal
چکیده

Life cycle impact assessment indicators are integrated for studying the process integration of renewable resources and CO2 capture and storage (CCS) in power plants. Besides the expected reduction in global warming potential (GWP), CCS induces energy and cost penalties. This paper presents a systematicmultiobjective optimisation framework for the optimal design of power plants with CO2 capture considering environomiccriteria to systematically assess the trade-off betweenenvironmental impacts, efficiencyand costs. Life cycle assessment is combinedwith flowsheeting, energy integration, economic evaluation and multi-objective optimisation techniques. Postand pre-combustion CO2 capture options for electricity generation processes, using fossil and renewable resources, are assessed. Multi-objective optimisations are performed for various objectives to reveal the influence on the decision making. The calculated CO2 emissions, allow to assess the impact of the CO2 tax, considering not only the on-site emissions but taking into account the overall life cycle of the fuel supply, electricity generation and CO2 capture. The results show that the environomic optimal process design and competitiveness of CO2 capture highly depends on the considered environmental impact and on the introduction of a carbon tax. © 2015 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermo-environomic optimisation strategy for fuel decarbonisation process design and analysis

To meet the CO2 reduction targets and ensure sustainable energy supply, the development and deployment of cost-competitive innovative low-carbon energy technologies is essential. To design and evaluate the competitiveness of such complex integrated energy conversion systems, a systematic thermo-environomic optimisation strategy for the consistent modelling, comparison and optimisation of fuel d...

متن کامل

Adsorption Performance Indicator for Power Plant CO2 Capture on Graphene Oxide/TiO2 Nanocomposite

This study presents the adsorption performance indicator for the evaluation of thermal power plant CO2 capture on mesoporous graphene oxide/TiO2 nanocomposite. To begin, this adsorbent was synthesized and characterized using N2 adsorption-desorption measurements (BET and BJH methods), X-Ray Diffraction (XRD), Field Emission Scanning Electron Microsc...

متن کامل

Modeling CO2 recovery for optimal dynamic operations

The development of amine scrubbing processes for coal and natural gas-fired power plants is essential to reduce CO2 emissions. The design of tailor-made dynamic models to predict CO2 capture in amine scrubbing processes is fundamental for optimal control operations. This paper presents the use of SIMPCA, a subspace system identification technique used to develop a dynamic empirical model for an...

متن کامل

Valuing power plant flexibility with CCS : the case of post - combustion capture retrofits

An important development in recent years has been increased interest in retrofitting CO2 capture at existing power plants. In parallel, it has also been suggested that flexible operation of power plants with CO2 capture could be important in at least some jurisdictions. It is likely that retrofitted power plants could have significant ‘built-in’ flexibility, but this potential is often not cons...

متن کامل

A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control.

Capture and sequestration of CO2 from fossil fuel power plants is gaining widespread interest as a potential method of controlling greenhouse gas emissions. Performance and cost models of an amine (MEA)-based CO2 absorption system for postcombustion flue gas applications have been developed and integrated with an existing power plant modeling framework that includes multipollutant control techn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015